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Abstract. We present empirical relations that connect the dimensionless ratios of low energy fermion
masses for the charged lepton, up-type quark and down-type quark sectors and the CKM elements:
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these relations from first principles imposes strong constraints on the search for the theory of flavor. We
present a simple set of normalized Yukawa matrices, with only two real parameters and one complex
phase, which accounts with precision for these mass relations and for the CKM matrix elements and also
suggests a simpler parametrization of the CKM matrix. The proposed Yukawa matrices accommodate
the measured CP -violation, giving a particular relation between standard model CP -violating phases,
β = Arg

[
2 − e−iγ]

. According to this relation the measured value of β is close to the maximum value
that can be reached, βmax = 30◦ for γ = 60◦. Finally, the particular mass relations between the quark and
charged lepton sectors find their simplest explanation in the context of grand unified models through the
use of the Georgi–Jarlskog factor.

1 Introduction

Any theory of flavor must explain the fermion mass hierar-
chies as well as the quark mixing angles. Unfortunately, few
patterns have been found in the measured values of fermion
masses and mixing angles that can guide us in the search
for an underlying theory of flavor. One of these, which has
been known since 1968 [1], is the well known empirical
relation between the down-quark mass, the strange-quark
mass and the Cabibbo angle,

|Vus| ≈
[
md

ms

] 1
2

. (1)

This relation has driven the development of theories of
flavor over more than three decades, starting in 1977 with
the first attempt to explain it using family symmetries [2,3].
Another quark mass relation that has been known for some
time is [

md

ms

] 1
2

≈
[
mu

mc

] 1
4

. (2)

Inspired by these two relations, many of the theories of
flavor proposed to date have focused on generating Yukawa
matrices that are polynomial in powers of λ, λ ≈ |Vus|, with
coefficients of order 1 [4]. There is a third famous relation. It
was argued as early as in 1979 that at momenta larger than
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1015 GeV quark and charged lepton masses are related by

md = 3me , mµ = 3ms , (3)

An ingenious method was proposed to account for this re-
lation by the use of SU(5) Clebsch–Gordan coefficients [5].
Other than these relations, it is usually claimed that the
fermion masses follow scaling laws of the form (md,ms) �
(λ4, λ2)mb in the down-type quark sector, (mu,mc) �
(λ8, λ4)mt in the up-type quark sector and (me,mµ) �
(λ4, λ2)mτ in the charged lepton sector. As can be easily
checked, however, these scaling laws are qualitative and do
not survive a precision analysis.

The measurement of the top-quark mass in 1995 and the
continuous improvement in the extraction of other quark
masses during the last decade motivate a more systematic
search for precise empirical relations between dimensionless
ratios of fermion masses in each fermion sector. There are
six independent fermion mass ratios of this kind, two for
each fermion sector. It is possible for hidden regularities
to manifest themselves more clearly through higher order
dimensionless ratios of fermion masses, i.e. ratios of the
formm2

a/(mbmc) orm3
a/(m

2
bmc). Indeed, as we show in this

paper, there are some interesting patterns underneath the
measuredvalues of the fermionmasses.These new relations,
which are not merely qualitative, are the following:
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We expect these two basic parameters, which we denote
hereafter by λ ≈ |Vus| and θ ≈ 1

2 |Vcb| / |Vus|, to be con-
nected with the fundamental parameters of the underlying
theory of flavor.

This paper is organized as follows. We begin in Sect. 2
by systematically searching for correlations between di-
mensionless mass ratios in different fermion sectors up to
order 3, i.e. up to ratios of the formm3

a/(m
2
bmc). We review

in the appendix the calculation of lepton and quark run-
ning masses which are used in Sect. 2. In Sect. 3 we analyze
Yukawa renormalization corrections that affect the studied
mass relations when evolved with the renormalization scale,
especially to the ratios including third generation fermion
masses. In Sect. 4 we show that, as a consequence of these
new empirical formulas the fermion mass hierarchies can
be expressed as a function of two basic parameters, λ and
θ. In Sect. 5 we show, neglecting CP -violation, that the ab-
solute values of the CKM mixing matrix elements can also
be expressed as simple functions of the basic parameters
λ and θ. In Sect. 6 we propose, neglecting CP -violation, a
simple reconstruction of the quark Yukawa matrices that
accounts for the correlations found in the previous sec-
tions. In Sect. 7 we introduce CP -violation in the textures
proposed in Sect. 6 and study its predictions for the CP -
violating parameters. In Sect. 8 we study the precision pre-
dictions for the lighter quark masses, CKM elements and
charged lepton masses arising from the texture proposed in
Sect. 6. In Sect. 9 we point out that the simplest solution to
account for the relations between the charged lepton sector
and the quark sector can be found in the extension of the
standard model SU(3)C × SU(2)L × U(1)Y symmetry to
the SU(5) symmetry of Georgi and Glashow. In Sect. 10
we speculate about the characteristics of underlying flavor
models that can reproduce these empirical mass relations.

2 Correlations between dimensionless fermion
mass ratios

In this section we will look for patterns in the dimensionless
mass ratios of running fermion masses. Other than the fact
that the first fermion generation is lighter than the second
and this is lighter than the third generation, there are no
other evident regularities in the fermion mass spectra, as
can be observed in Fig. 1. Based on the experimental fact
that the third generation is much heavier than the first and
second generations and that the quark mixing angles are
small we hope that there is a simple mechanism of flavor
breaking which generates at some higher energy scale a
simple structure in the normalized Yukawa matrices. If
this is the case it is plausible that at such a scale the
normalized Yukawa matrices have the form

Ŷ =

0 0 0
0 0 0
0 0 1

+ O(λ, θ, . . .) , (6)
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Fig. 1. The fermion mass spectra

where λ, θ, . . . represent generically some perturbative fla-
vor breaking parameters, i.e. λ, θ, . . . � 1, directly related
to the underlying theory of flavor. We note that in many
flavor models proposed in the literature the flavor breaking
is parametrized by a unique parameter λ. Therefore we ex-
pect the fermion mass ratios in each one of the three fermion
sectors, up-type quark, down-type quark and charged lep-
ton, to be expressed as a simple polynomial functions of
the flavor parameters, λ, θ, . . .,

m̂1 =
m1

m3
= f1(λ, θ, . . .) , (7)

m̂2 =
m2

m3
= f2(λ, θ, . . .) . (8)

Let us assume, to simplify the discussion, that there are
only two flavor breaking parameters: λ and θ. In this case it
would be possible to solve the previous system of equations
and obtain expressions for λ and θ as a function of the
fermion mass ratios,

λ = λ(m̂1, m̂2) , (9)

θ = θ(m̂1, m̂2) . (10)

This can be done for each fermion sector separately. This
makes it plausible that underlying patterns become mani-
fest more clearly in higher order mass ratios, even though
these can be expressed as a function of the six basic fermion
mass ratios. When searching for mass relations between dif-
ferent fermion sectors, it is convenient to calculate ratios
of running fermion masses at a common renormalization
scale. If there are regularities in the underlying Yukawa
matrices, these will be manifested more clearly in the ra-
tios of running fermion masses, not in the ratios of physical
masses. Using the running masses that we have calculated
in the appendix we obtain dimensionless mass ratios in
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Table 1. Dimensionless fermion mass ratios in the charged lepton, up- and down-type quark sectors calculated from measured
values as explained in the text

Charged leptons Down-type quarks Up-type quarks
I me/mµ (4.73711 ± 0.00007) × 10−3 md/ms (4.4 ± 1.4) × 10−2 mu/mc (2.6 ± 0.8) × 10−3

II mµ/mτ (5.882 ± 0.001) × 10−2 ms/mb (2.4 ± 0.4) × 10−2 mc/mt (3.7 ± 0.6) × 10−3

III memµ/m2
τ (1.6390 ± 0.0006) × 10−5 mdms/m2

b (2.5 ± 1.0) × 10−5 mumc/m2
t (3.65 ± 1.5) × 10−8

IV m2
e/mµmτ (1.3199 ± 0.0003) × 10−6 m2

d/msmb (4.7 ± 2.5) × 10−5 m2
u/mcmt (2.52 ± 1.4) × 10−8

V m2
µ/memτ 12.417 ± 0.002 m2

s/mdmb 0.53 ± 0.26 m2
c/mumt (1.45 ± 0.71)

VI m3
e/m2

µmτ (6.253 ± 0.001) × 10−9 m3
d/m2

smb (2.1 ± 1.8) × 10−6 m3
u/m2

cmt (6.5 ± 5.8) × 10−11

VII m3
e/mµm2

τ (3.678 ± 0.001) × 10−10 m3
d/msm

2
b (5.0 ± 3.7) × 10−8 m3

u/mcm
2
t (2.44 ± 2.0) × 10−13

VIII m3
µ/m2

emτ 2621.2 ± 0.5 m3
s/m2

dmb 12 ± 10 m3
c/m2

umt (560 ± 455)
IX mem

2
µ/m3

τ (9.640 ± 0.005) × 10−7 mdm2
s/m3

b (6.0 ± 3.5) × 10−7 mum2
c/m3

t (1.4 ± 0.8) × 10−10

X m2
emµ/m3

τ (4.567 ± 0.002) × 10−9 m2
dms/m3

b (2.7 ± 1.6) × 10−8 m2
umc/m3

t (3.5 ± 2.4) × 10−13

XI m3
µ/mem

2
τ 0.7304 ± 0.0002 m3

s/mdm2
b (1.3 ± 0.9) × 10−2 m3

c/mum2
t (5.4 ± 3.5) × 10−3

the charged lepton, up-type quark and down-type quark
sectors. We calculate ratios of order 1, c[1], order 2, c[2],
and order 3, c[3]. These ratios are generically of the form

c
[1]
ab =

ma

mb
, c

[2]
abc =

m2
a

mbmc
, c

[3]
abc =

m3
a

m2
bmc

, (11)

where a, b, c = 1, 2, 3 are generation indices. Our numeri-
cal results are shown in Table 1. We have also included
uncertainties for the mass ratios, ∆c, calculated using
∆c = |∂c/∂ma|∆ma, where ∆ma are the uncertainties
in the determination of running fermion masses. The mea-
sured quark and charged lepton masses used as an input
in our calculations are explained in detail in the appendix.
We have compared analogous c coefficients in the three
different fermion sectors, looking for simple correlations of
the form cp = rcq or cp = crq where r is a low integer num-
ber and p, q = l, u, d denote similar ratios in the charged
lepton, up-type or down-type quark sectors.

We have first searched for correlations between the mass
ratios in the up-type quark and down-type quark sectors.
We have only found two clear correlations. The first cor-
relation appears for the order one coefficient in entry I of
Table 1. The correlation appears between the ratios[

md

ms

]1/2
= 0.211 ± 0.033 , (12)

[
mu

mc

]1/4
= 0.225 ± 0.018 , (13)

and the Cabibbo angle |Vus|. These ratios have uncertain-
ties respectively of the order ±16% and ±8% of the central
values. It is convenient to show this correlation in an al-
ternative form, which makes it more manifest:[

mu

mc

]1/4
:
[
md

ms

]1/2
= 1.06 ± 0.25 . (14)

This correlation has been known for some time. Curiously,
we also find an interesting correlation with the analogous

ratio in the charged lepton sector:[
md

ms

]1/2
:
[
me

mµ

]1/2
= 3.06 ± 0.48 . (15)

The ±15% uncertainty in the calculation of this ratio comes
from the uncertainty in the determination of the lighter
quark masses. This indicates that the following ratio in the
charged lepton sector,

3
[
me

mµ

]1/2
= 0.20648 ± 0.000002 , (16)

gives a numerical value very close to the Cabibbo angle
and to the ratios in (12) and (13). It was first pointed out
in 1979 by Georgi and Jarlskog [5] that at momenta larger
than 1015 GeV quark and charged lepton masses seem to
be related by

md = 3me , mµ = 3ms , (17)

and that this relation could be explained by the use of
SU(5) Clebsch–Gordan coefficients. We want to empha-
size that the previous correlations indicates that indeed
there is a very precise relation between the Cabibbo an-
gle and the ratios of the fermion masses of the first and
second generation,

|Vus| ≈
[
md

ms

]1/2
≈
[
mu

mc

]1/4
≈ 3

[
me

mµ

]1/2
. (18)

We will see in Sect. 3 that, as a very good approximation,
this relation is renormalization scale independent. We have
found only one more simple correlation amongst the dimen-
sionless mass ratios shown in Table 1. This appears for the
order three coefficient shown in the entry XI in Table 1. It
is convenient to take the square root of the numbers shown
in the table. In the up-type and down-type quark sectors
we obtain [

m3
c

m2
tmu

] 1
2

= 0.073 ± 0.023 , (19)
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[
m3
s

m2
bmd

] 1
2

= 0.114 ± 0.039 . (20)

Both ratios have an important uncertainty, approximately
±32% of the central value, coming from the uncertainties in
the extractions of the lighter quark masses. It is convenient
to quantify the correlation by taking the ratio[

m3
s

m2
bmd

] 1
2

:
[

m3
c

m2
tmu

] 1
2

= 1.5 ± 1.0 . (21)

We note that there are two integer numbers, {1, 2}, inside
the error bars which could give us a simple correlation.
Furthermore, using in (20) a recent lattice extraction of
the strange-quark mass mentioned in the appendix [21]
instead of the sum rules extraction the ratio in (21) turns
out to be closer to 1 while the uncertainty is reduced,[

(mlat
s )3

m2
bmd

] 1
2

:
[

m3
c

m2
tmu

] 1
2

= 0.8 ± 0.5 . (22)

This lattice extraction of the strange-quark mass has not
been used throughout the main text because it has not yet
been confirmed by other lattice QCD collaborations. If we
compare with the analogous ratio between the down-type
sector and the charged lepton sector we obtain[

m3
µ

mem2
τ

] 1
2

:
[

m3
s

m2
bmd

] 1
2

= 7.5 ± 2.6 . (23)

The uncertainty is again important, approximately ±34%
of the central value, but it clearly points out that there
are four integer numbers, {6, 7, 8, 9}, inside the error bars
which could give us a simple correlation. It is interesting to
check the values predicted by multiplying by the inverse of
these integer factors the coefficient in the charged lepton
sector. For instance, multiplying by 1/8, 1/9 and 1/10 we
obtain the following values:

θ8τ =
1
8

[
m3
µ

mem2
τ

] 1
2

= 0.10681 ± 0.00001 , (24)

θ9τ =
1
9

[
m3
µ

mem2
τ

] 1
2

= 0.09495 ± 0.00001 , (25)

θ10τ =
1
10

[
m3
µ

mem2
τ

] 1
2

= 0.08545 ± 0.00001 . (26)

If we compare these values with the values of the coefficients
in (19) and (20) we observe that the integer factors 9 and 10
give us a number which is compatible with the error bars of
the coefficients in the up- and down-type sector simultane-
ously. We find specially interesting the appearance of the
factor 9 because as we will see in Sect. 9 there is already
a simple solution to the problem of how to explain this
factor, the Georgi–Jarlskog factor in GUT theories. These
results indicate that there may be a second precise relation
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Fig. 2. Renormalization scale evolution of the coefficients θt, θb

and θ8,9,10
τ couplings and their uncertainties according to the SM

RGE equations. The three coefficients and their uncertainties
shown in the plot were calculated using (19), (20) and (24)–
(26). The lighter quark masses used were extracted using sum
rules

between the low energy ratios of the fermion masses of the
first, second and third generations,

[
m3
s

m2
bmd

]1/2
≈
[

m3
c

m2
tmu

]1/2
≈ 1

9

[
m3
µ

m2
τme

]1/2

. (27)

The present uncertainties in the extraction of the lighter
quark masses do not allow us to determine if the relation
works at the 1% level or just at the 40% level. Surprisingly
we must emphasize that the exact empirical relation as
given by (27) is inside the 1σ experimental uncertainties
for all of the three coefficients as calculated in (19), (20)
and (25). These can be observed more clearly in Fig. 2.
We hope that near future improvements in the extraction
of the lighter quark masses, by the use of lattice QCD
methods, could test with precision this empirical formula.
We note that there are only six independent mass ratios.
We have already found two simple and precise correlations
linking the six of them. Therefore there cannot appear
new correlations for other dimensionless mass ratios that
cannot be expressed as a function of these two.

3 Fermion mass ratios and the Yukawa scale

In Sect. 3 we searched for correlations between dimension-
less ratios of fermion masses at low energies. Nonetheless,
it is known that the top-quark Yukawa coupling is of order
1, since the top mass is of the same order as the electroweak
scale. This implies thatYukawa coupling corrections cannot
be ignored in the renormalization of the third generation
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fermion masses to very high energies. In models where the
Higgs fields are flavor independent approximate solutions
that relate mass ratios at different renormalization scales
µ and µ0 are given by(

md,s

mb

)
µ

≈
(
md,s

mb

)
µ0

ξb , (28)

(
mu,c

mt

)
µ

≈
(
mu,c

mt

)
µ0

ξt , (29)

(
me,µ

mτ

)
µ

≈
(
me,µ

mτ

)
µ0

ξτ , (30)

In the case of the SM and the MSSM these effects can be
calculated approximately from available one-loop renor-
malization group equations [6]. For the standard model we
obtain ξb = ξ−1

t = ξ and ξ is defined by

ξ ≈ Exp

[
3

32π2 ln
(
µ

µ0

)(
1 −

(
mb

mt

)2
)]

, (31)

since mb/mt ≈ 2 × 10−2 this is approximately,

ξ ≈
(
µ

µ0

) 3
32π2

. (32)

Moreover the tau lepton Yukawa renormalization factor is
very small,

ξτ ≈ ξ(
mτ
mt

)2

≈
(
µ

µ0

)−( 3
32π2104 )

. (33)

We are interested in evaluating how the correlations found
in Sect. 2 evolve with the renormalization scale when in-
cluding Yukawa corrections. To this end let us define the
dimensionless ratios,

θb =
[

m3
s

m2
bmd

] 1
2

, θt =
[

m3
c

m2
tmu

] 1
2

,

θτ =
1
9

[
m3
µ

m2
τme

] 1
2

.

(34)

Their evolution, using (28), (29) and (30), is given by(
θb
θt

)
µ

≈
(
θb
θt

)
µ0

ξ2 ,

(
θb
θτ

)
µ

≈
(
θb
θτ

)
µ0

ξ . (35)

If we assume that µ/µ0 = MG/MZ ≈ 1014 we obtain
ξ ≈ 1.36. If we extrapolate the mass relations up to the
GUT scale using SM RGEs we obtain(

θb
θt

)
MG

≈ 2.8 ± 1.0 (36)

and (
θb
θτ

)
MG

≈ 3.5 ± 2.6 , (37)

which must be compared with the low energy ratios cal-
culated in Sect. 2,(

θb
θt

)
MZ

= 1.5 ± 1.0 (38)

and (
θb
θτ

)
MZ

= 7.5 ± 2.6 . (39)

Therefore the renormalization up to the GUT scale seems
to spoil the mass correlation between the up- and down-
type quark sector. These results are summarized in Fig. 2.
They may indicate that the Yukawa scale, the scale where
the Yukawa couplings are generated, is an intermediate
scale much lower than the GUT scale, or alternatively,
that it is not correct to use SM RGEs in the evolution
of the fermion masses up to the GUT scale. If we assume
that the couplings evolve according to the MSSM RGEs
the results depend on tanβ, the ratio of Higgs expectation
values in the MSSM. We obtain

ξb ≈ ξ
1/3
t ≈ Exp

[
− 1

16π2 ln
(
µ

µ0

)]
, tβ � 1 ,

(40)

ξb ≈ ξt ≈ Exp
[
− 1

4π2 ln
(
µ

µ0

)]
, tβ � 1 . (41)

Therefore we obtain the following scaling factors for low
tanβ: (

θb
θt

)
µ

≈
(
θb
θt

)
µ0

ξ4/3 , (42)

(
θb
θτ

)
µ

≈
(
θb
θτ

)
µ0

ξ−2/3 . (43)

Here ξ was defined in (32) and using µ/µ0 = MG/MZ we
obtain ξ4/3 ≈ 1.5 and ξ−2/3 ≈ 0.81. For large tβ we obtain(

θb
θt

)
µ

≈
(
θb
θt

)
µ0

, (44)

(
θb
θτ

)
µ

≈
(
θb
θτ

)
µ0

ξ−8/3 . (45)

Here ξ−8/3 ≈ 0.44 for µ/µ0 = MG/MZ . Therefore in the
MSSM, for both cases, low and large tanβ, we cannot ex-
trapolate the mass relations to scales as high as the GUT
scale without spoiling the successful low energy mass re-
lations. This again may be an indication that the Yukawa
scale is not so far from the electroweak scale. We would like
to point out that the ratios of first to second generation
fermion masses, md/ms, mu/mc and me/mµ, receive tiny
Yukawa renormalization factors. Therefore the mass rela-
tion [

md

ms

]1/2
=
[
mu

mc

]1/4
= 3

[
me

mµ

]1/2
, (46)
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can be considered renormalization scale independent. To
sum up, this analysis indicates that the second empirical
relation, as given by (27), may be optimal at some in-
termediate or low energy scale. Nevertheless, the present
uncertainties in the lighter quark masses are not small
enough to allow us the determination of the scale at which
this empirical formula is optimal.

4 The fermion mass hierarchies

The empirical formulas found in the previous section can
be simply understood if the fermion mass hierarchies are
expressed as a function of two real parameters that we will
denote hereafter by θ and λ. Let us assume that the ratios
of running masses can be written in the following form:

(md,ms) =
(
θλ3, θλ

)
mb , (47)

(mu,mc) =
(
θλ6, θλ2)mt , (48)

(me,mµ) =
(

1
3
θλ3, 3 θλ

)
mτ . (49)

We can easily prove that if this is the case we obtain im-
mediately the correct empirical mass relations,

λ =
[
md

ms

]1/2
=
[
mu

mc

]1/4
= 3

[
me

mµ

]1/2
, (50)

θ =
[

m3
s

m2
bmd

]1/2
=
[

m3
c

m2
tmu

]1/2
=

1
9

[
m3
µ

m2
τme

]1/2

.(51)

In other words we can say that the hierarchies in (47)–
(49) solve (50) and (51). We pointed out before that λ
corresponds approximately to the Cabibbo angle. The pa-
rameter θ may be considered a new flavor parameter that
seems to suppress, in all three fermion sectors, both first
and second generation masses in the same amount with re-
spect to the third generation. The fact that θ and λ connect
different fermion sectors and that the correlations we have
found work at a quantitative level suggest that θ and λ
could be directly related to the underlying theory of flavor.
We expect that any theory of flavor must be able to ex-
plain these correlations from first principles, and perhaps
provide a prediction for θ and λ.

Although the important uncertainties in the current
extraction of lighter quark masses make impossible to know
to what extent the relations in (50) and (51) hold, it is
plausible that one can study the implications derived of
the assumption that these relations are exact or almost
exact. If this were the case we are lead to assume that
the charged lepton sector is providing us the most precise
determination of the basic flavor parameters λ and θ, λ ≈
0.21 and θ ≈ 0.095.

5 The CKM mixing matrix hierarchies
(neglecting CP -violation)

Atheory of flavor must explain the fermion mass hierarchies
and the measured flavor mixing. Therefore it is important

for the reconstruction of the Yukawa matrices to study if
it is possible to express the absolute values of the CKM
matrix elements as simple functions of the two basic fla-
vor parameters, θ and λ. We include for completeness a
compilation of the latest extractions of the elements of the
CKM mixing matrix, |Vexp

CKM|,



0.9739 ± 0.0005 0.2224 ± 0.0036 0.00357 ± 0.00031
0.2224 ± 0.0035 0.9740 ± 0.0008 0.0415 ± 0.0008

≤ 0.005 0.0405 ± 0.0035 0.99915 ± 0.00015


 .

(52)
Here to obtain |Vud|, two measurements, from superallowed
Fermi transitions and nuclear beta decay, have been com-
bined, as in p. 36 of the 2002 CERN Workshop on the CKM
matrix [7]. The value used for |Vus| was calculated in p. 37
of the same reference by requiring unitarity. For |Vub| and
|Vcb| we use the latest extractions from B physics, as in p.
6 of the same reference. For the rest of the CKM elements
we use the 2002 PDG compilation values [8]. We fit each of
the measured absolute values of the CKM matrix elements
to simple functions of products of integer powers of the
fundamental parameters λ and θ. We use the numerical
values for θ and λ as determined from the charged lepton
sector, i.e. θ ≈ 0.095 and λ ≈ 0.21, and look for correla-
tions of the form r θpλq, where p and q are integer numbers
and r is a low integer or rational number. We obtain as
the best fits to the measured CKM elements the functions

|Vus| = 0.2224 ± 0.0036 ≈ λ , (53)∣∣∣∣ VcbVus

∣∣∣∣ = 0.187 ± 0.006 ≈ 2θ , (54)∣∣∣∣VubVcb

∣∣∣∣ = 0.086 ± 0.009 ≈
(
λ

2
, θ

)
. (55)

We note that the ratio |Vub/Vcb| has an important uncer-
tainty which, in principle, would allow us to fit it at 2σ to
both terms, θ or λ/2. The large experimental uncertainty
in the entry |Vtd| does not allow us to implement a fit to θ
and λ. Therefore we obtain, ignoring CP -violating phases,
the following structure for the CKM matrix as a function
of the parameters θ and λ,

VCKM(λ, θ) ≈
1 − λ2/2 −λ a

λ 1 − b2 −2θλ
c 2θλ 1 − 2θ2λ2

 , (56)

where a, b and c must be considered unknown functions
of θ and λ which can be calculated requiring the matrix
VCKM(λ, θ) to be unitary. This determines a system of three
equations which can be solved requiring unitarity to order
O(λ3),

VudVcd + VusVcs + VubVcb = O(λ4) , (57)

VudVtd + VusVts + VubVtb = O(λ4) , (58)

VtdVcd + VtsVcs + VtbVcb = O(λ4) . (59)
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We obtain a = c = θλ2 and b = λ2/2 + 2θ2λ2. Therefore
we obtain for |VCKM(λ, θ)|,1 − λ2/2 λ θλ2

λ 1 − λ2(1 + 4θ2)/2 2θλ
θλ2 2θλ 1 − 2θ2λ2

 . (60)

We note that if we had chosen the correlation |Vub/Vcb| ≈ θ
instead of |Vub/Vcb| ≈ λ/2 the CKM matrix could not meet
the unitarity requirement.

We also note that one of the most interesting charac-
teristics of the Yukawa matrices proposed in this section
is that they account for the quark mass ratios and CKM
elements quantitatively with only two real parameters. It is
known that a general unitary matrix can be parametrized
using three mixing angles and a complex phase. Our results
indicate that only two real parameters seem to be necessary
to account quite well for the absolute values of the CKM
elements and quark mass ratios. The CKM reconstructed
matrix in (60) can be expressed, using the standard PDG
notation [8] as the product of three rotation matrices, each
around a different axis,

|VCKM| ≈ R12(θ12)R23(θ23)R13(θ13) , (61)

where θ12 = λ, θ23 = θλ and θ13 = θλ2. Here R12(θ12) is
a rotation of angle λ in the first–second generation plane,

R12(λ) ≈

1 − λ2

2 −λ 0
λ 1 − λ2

2 0
0 0 1

 , (62)

and R23(θ23) and R13(θ13) are rotations of angle θλ and
θλ2 around the second–third and first–third generation
planes respectively,

R23(2θλ) ≈
1 0 0

0 1 − 2θ2λ2 −2θλ
0 2θλ 1 − 2θ2λ2

 (63)

and

R13(θλ2) ≈

1 − θ2λ4

2 0 −θλ2

0 1 0
θλ2 0 1 − θ2λ4

2

 . (64)

We have seen that the present experimental data allow
us to express the fermion mass hierarchies and the abso-
lute values of the CKM matrix elements as a function of
two basic parameters θ and λ. Throughout this section we
have ignored the presence of a CP -violating phase, which
is required experimentally. The presence of CP -violating
phases could affect seriously the relations between the ab-
solute values of some of the CKM elements and the pa-
rameters λ and θ as proposed in this section. We will see
in Sect. 7 that CP -violating phases can be included in the
previous analysis giving an excellent fit to the data. In the
next section we will show that to leading order in λ there
is a unique set of Yukawa matrices that can reproduce
these hierarchies.

6 Quark Yukawa matrices
(neglecting CP -violation)

In this section we propose a particular reconstruction of
the quark Yukawa matrices that can explain the quark
mass and mixing hierarchies found in previous sections. We
restrict our discussion to symmetric mass matrices. We will
also assume that correct CKM elements or masses do not
arise as approximate cancellations requiring the tuning of
different Yukawa matrix elements. It is convenient to define
the 3 × 3 normalized fermion mass matrices as

m̂D =
1
m̂b

mD , m̂U =
1
m̂t

mU .

Here mD,U are the quark mass matrices and m̂b and m̂t

are normalized bottom- and top-quark masses, which are
defined as the ratio of bottom- and top-quark running
masses over the largest eigenvalue of the respective nor-
malized matrix. We have the freedom to choose the (33)
entry in the normalized mass matrices equal to 1, which
correspond to the heaviest eigenvalue. Although not di-
agonal in the gauge basis the matrix mD can be brought
to diagonal form in the mass basis by a biunitary diago-
nalization, (VdL)†mDVdR = (md,ms,mb). Analogously the
up-type quark mass matrix, mU , can be brought to diago-
nal form in the mass basis by a biunitary diagonalization,
(VuL)†mUVuR = (mu,mc,mt). The CKM mixing matrix is
defined by VCKM = Vu†

L VdL.
First we note that it is not possible to generate the

Cabibbo angle, λ ≈ |Vus|, from the mixing between the first
and second generations in the up-type quark sector. The
normalized charm quark mass is approximately θλ2, there-
fore to generate the correct magnitude for |Vus| from |VuL |21,
|VuL |21 ≈ (m̂U )12/(m̂U )22, we would need (m̂U )12 ≈ θλ3,
but if it this were the case the normalized up mass would
be too heavy, mu/mt ≈ (m̂U )212/(m̂U )22 ≈ θλ4, which is
in disagreement with the measured up–top mass hierarchy,
mu/mt ≈ θλ6. Obtaining the correct up-quark mass give
us a bound on the entries of the upper-left submatrix of
the normalized up-type quark matrix, which must look like

(m̂U )u−c
2×2 =

[≤ O(θλ6) ≤ O(θλ4)
≤ O(θλ4) θλ2

]
. (65)

Therefore the Cabibbo angle must arise from first–second
generation mixing in the down-type quark sector. We
pointed out in the previous sections that the measured
hierarchies in the down-type quark sector can be written as

md

mb
≈ θλ3 <<

ms

mb
≈ θλ < |Vus| ≈ λ . (66)

We note that assuming (m̂D)12 = θλ2 and (m̂D)22 = θλ ≈
ms/mb, we obtain (m̂D)212/(m̂D)22 = θλ3 ≈ md/mb and
(m̂D)12/(m̂D)22 = λ. This is consistent with a down-quark
mass mainly generated from the first–second generation
mixing as first pointed out by [3], i.e.,

(m̂D)d−s2×2 =
[

0 θλ2

θλ2 θ λ

]
, (67)
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since in this case one correctly obtains
∣∣VdL∣∣12 ≈ (m̂D)12/

(m̂D)22 = λ ≈ |Vus|. Furthermore, as shown in the previ-
ous section, the measured hierarchies between the CKM
elements can be written as

|Vub| ≈ θλ2 < |Vcb| ≈ 2θλ � (ms/mb) ≈ θλ < |Vus| ≈ λ .
(68)

We note that if we additionally assume that (m̂D)23 =
2θλ then we obtain the correct |Vcb|, since

∣∣VdL∣∣23 =
(m̂D)23/(m̂D)33 = 2θλ. One can wonder if it would be
possible to fully generate the CKM matrix entry |Vub| from
the (23)–(12) mixing in the down-type quark sector, or in
other words, if we can assume that the normalized down-
type quark matrix has a zero in the (13) and in the (31)
entry. A calculation of the diagonalization matrices shows
us that this possibility is not viable. If this were the case∣∣VdL∣∣ would be given by

∣∣VdL∣∣ ≈ θ2λ3 which is two orders of
magnitude below the measured value for |Vcb|, |Vcb| ≈ θλ2.
Therefore we need to generate |Vcb| directly from a non-zero
(m̂D)13 entry,

m̂D =

 0 θλ2 θλ2

θλ2 θλ 2θλ
θλ2 2θλ 1

 . (69)

Wemust note here that the possibility to fully generate |Vub|
in the up sector is not viable; if that were the case we would
generate an up-quark mass one order of magnitude too
heavy. This m̂D matrix would predict successfully all the
elements of the CKM mixing matrix, assuming the mixing
in the up-type sector does not affect the leading order
predictions in λ. This can be observed in the expressions
for the diagonalization matrix, VdL, given by

VdL =

1 − λ2

2 λ −θλ2

−λ 1 − λ2

2 (1 + 4θ2) −2θλ
−θλ2 2θλ 1 − 2θ2λ2

 , (70)

Using this we obtain for the mass eigenvalues to leading
order in λ,

(VdL)†m̂DVdR ≈ (θλ3, θλ, 1 + θ2λ2) , (71)

which is in perfect agreement with the reconstructed quark
mass hierarchies in (47). In the previous reasoning we as-
sumed that the possible flavor mixing in the up-type quark
sector does not affect to leading order the predictions for the
CKM matrix which are generated in the down-type sector.
If this were the case, there are two simple solutions which
allow us to generate the correct up-quark mass, directly
from the (11) entry:

m̂U =

θλ6 0 0
0 θλ2 0
0 0 1

 , (72)

or from the first–second generation mixing

m̂U =

 0 θλ4 0
θλ4 θλ2 0
0 0 1

 . (73)

Since both possibilities make the same predictions for quark
mass ratios and CKM elements both are equivalent by a
rotation of the quark fields. It could be possible to gen-
eralize the previous solution to a solution that generates
part of |Vcb| from flavor mixing between second and third
generations in the up-type quark sector. Let us assume that

m̂D =

 0 θλ2 θλ2

θλ2 θλ (2 − ε)θλ
θλ2 (2 − ε)θλ 1

 (74)

and

m̂U =

θλ6 0 0
0 θλ2 −εθλ
0 −εθλ 1

 . (75)

In this case the diagonalization matrices are respectively

VdL =

 1 − λ2

2 −λ −θλ2

λ 1 − λ2

2 (1 + η2θ2) ηθλ

(ε− 1)θλ2 ηθλ 1 − 1
2 η

2θ2λ2

 , (76)

where η = (2 − ε) and

VuL =

1 0 0
0 1 − ε2 θ

2λ2

2 −εθλ
0 εθλ 1 − ε2 θ

2λ2

2

 . (77)

These two solutions, the one given by (69), (72) and (73) or
the one given by (74) and (75) are indistinguishable in their
predictions for quark mass ratios and CKM elements to first
order in powers of λ. Both reproduce the correct form for
the CKM matrix in (60). Therefore they are equivalent and
can be related by a rotation of the quark fields. We note that
from their diagonalization we obtain the correct empirical
expressions for λ and θ as a function of dimensionless quark
mass ratios (see (18) and (27)). To first order

λ ≈
(
md

ms

) 1
2

≈
(
mu

mc

) 1
4

, (78)

θ ≈
(

m3
s

m2
bmd

) 1
2

≈
(

m3
u

m2
cmt

) 1
2

. (79)

Nevertheless, there are in principle other solutions that are
not equivalent to the family of solutions here proposed and
make the same predictions to leading order. These could be
differentiated in their precision predictions for mass ratios
and CKM elements when including higher orders in powers
of λ.

7 Introducing CP -violation

We have seen in the previous section that a set of two pa-
rameter Yukawa matrices of the form given in (69) and (72)
represents a family of solutions, in the basis where the up-
type Yukawa matrix is diagonal, that can account for the
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quark mass ratios and the absolute values of the CKM ma-
trix elements. It is possible to introduce complex phases
in this picture to account for the measured CP -violation
without spoiling these successful predictions. In order to
do so we promote the real symmetric matrix in (69) to
be hermitian. In the most general hermitian case we can
introduce complex phases in the form

m̂D =

 0 eiψ1θλ2 eiψ2θλ2

e−iψ1θλ2 θλ 2eiψ3θλ

e−iψ2θλ2 2e−iψ3θλ 1

 . (80)

We note that there is only one physical phase in this matrix.
This is shown more explicitly by a redefinition of the phases
of the quarkfields,which can simplify thepreviousmatrix to

m̂D =

 0 θλ2 e−iγθλ2

θλ2 θλ 2θλ
eiγθλ2 2θλ 1

 , (81)

where γ = −(ψ2 −ψ1 −ψ3). If this were the case we obtain
for the CKM matrix, VCKM = VdL, to leading order in λ, 1 − λ2

2 λ −e−iγθλ2

−λ 1 − λ2

2 (1 + 4θ2) −2θλ
(eiγ − 2)θλ2 2θλ 1 − 2θ2λ2

 . (82)

The angle γ introduced this way coincides with the stan-
dard definition,

γ = Arg
[
−VudV

∗
ub

VcdV ∗
cb

]
. (83)

Furthermore the angle β is given by

β = Arg
[
−VcdV

∗
cb

VtdV ∗
tb

]
. (84)

The angle α can be obtained from the relation, α+β+γ =
180◦. We note that the matrices in (80) and (81) make
exactly the same predictions for β and γ. The hermitian
matrix of the form given by (81) predicts a simple relation
between the angles β and γ, which to leading order is

β = Arg
[
2 − e−iγ] . (85)

The angle β can be determined with 7% accuracy using the
experimental determination of sin 2β, sin 2β = 0.78±0.08.
We obtain βexp = 25.7◦ ± 3.5◦. This indicates that the
value of β that nature has chosen is close to the maximum
value that β can reach in the case under consideration,
βmax = 30◦, which appears for γ = 60◦,

dβ
dγ

= 0 → γ = 60◦ → α = 90◦ . (86)

We note that this does not correspond with the case of
maximal CP -violation. If we compute the determinant of
the Jarlskog matrix, C =

[
m̂Um̂†

U , m̂Dm̂†
D

]
, we obtain

det C = 2J θ4λ6 + O(λ11) , (87)

0 π/3 ππ/2 2π

π/6

-π/6

0

γ

β

Fig. 3. Relation between CP -violating phases β and γ as
predicted by the quark Yukawa matrices in (72) and (81).
The horizontal hatched strip corresponds to the measurement
sin(2β)exp = 0.78±0.08. The vertical hatched strip corresponds
to the 1σ global fit for the angle γ, γfit = 61◦ ± 11◦. The solid
curve corresponds to the leading order relation between β and
γ given by (85). The dotted curved corresponds to the next to
leading order relation given by (104)

where J is the Jarlskog parameter, the invariant measure
of CP -violation, which in our case is given by

J = 2 sin(γ)θ2λ4 (1 + O(θλ)) . (88)

We note that the maximal CP -violation case corresponds
to γ = π/2, and, using (85), this corresponds to

dJ
dγ

= 0 → γ = 90◦ → β = 26.6◦ . (89)

Although there is a simple relation, see (85), between β
and γ, the angle γ, as can be seen in Fig. 3, cannot be
determined with a good precision from that relation and the
experimentally determined value of β. We obtain γtheo =
65◦±38◦, which is in agreement with the 2004 winter global
fit of the CKM elements obtained using the results of the
program CKMFitter [9]:

γexp = 61◦ ± 11◦ . (90)

Alternatively we can use this experimental value of γ to
predict β from (85), as can be seen on Fig. 3. We obtain
to leading order

βtheo = 29.4◦ ± 0.05◦ , (91)

which corresponds to sin(2β)theo = 0.855 ± 0.001. The
Jarlskog parameter is determined experimentally to beJ =
(3.0± 0.3)× 10−5. The use of the Jarlskog parameter does
not allow us to extract γ with a better precision because of
the uncertainties in the determination of λ and θ. On the
other hand, our expression for J predicts an interesting
relation between J and the quark masses:

J ≈ 2
mdms

m2
b

sin(γ) (1 + O(θλ)) . (92)

Finally, we note that there are two non-trivial character-
istics in the relation between β and γ, (85), as predicted
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by the CKM matrix in (82): first there is no dependence
on λ or θ to first order and second, and most important,
the relation agrees with the experimental measurements
of β and γ. We note that a general four parameter CKM
matrix predicts a general relation between β and γ given by
β = Arg

[
x− e−iγ

]
were x = |Vcb| |Vus| / |Vub|. We could

alternatively say that the proposed Yukawa matrix in (81)
predicts that x = 2. The crucial experimental test for the
relation between β and γ will be made for x.

8 Predictions for masses and mixings

In this sectionwewill show that the simple three-parametric
set of Yukawa matrices proposed in Sect. 7, when it is as-
sumed at low energies, around the electroweak scale, can fit
with precision all the experimental data on quark masses
and CKM elements. Let us assume that the normalized
Yukawa matrix m̂U is given by (72) while the normalized
m̂D matrix is given by (81). Given this set of up-type
and down-type quark Yukawa matrices one can express
the CKM elements and the quark mass ratios to the next
to leading order as a function of θ, λ and γ. From the
diagonalization of (81) we obtain

md

ms
= λ2(1 − θλ(4cγ − 9)) , (93)

ms

mb
= θλ(1 − 4θλ+ λ2) . (94)

Here cγ = cos(γ). The up-type quark mass ratios are
given by

mu

mc
= λ4 ,

mc

mt
= θλ2 , (95)

while the absolute values of CKM matrix elements to the
next to leading order in λ are given by

|Vus| = λ− 2(cγ − 2)θλ2 + O(λ3) , (96)

|Vud| = 1 − 1
2
λ2 + 2(cγ − 2)θλ3 , (97)

|Vub| = θλ2 + 2cγθ2λ3 , (98)

|Vcs| = 1 − 1
2
λ2(1 + 4θ2) + 2θλ3(cγ − 2) , (99)

|Vcb| = 2θλ(1 + θλ) , (100)

|Vtd| = (5 − 4cγ)
1
2
(
θλ2 + 4θ2λ3) , (101)

|Vts| = 2θλ+ 2θ2λ2 + (cγ − 1)θλ3 , (102)

|Vtb| = 1 − 2λ2θ2 − 4θ3λ3 . (103)

Moreover |Vcd| = |Vus|. The CP -violating phases β and γ
are related to the next order in λ by

β = Arg
[
(2 − e−iγ)

(
1 + θλ(1 − 2eiγ)

)]
, (104)

which reduces to (104) to leading order.
We will next explain in some detail our calculation

method. There are six input parameters in the up, down

Table 2. Predictions given by the three-parametric set of
Yukawa matrices in (72), (81) and (106). We have used as
input parameters the measured values at the electroweak scale
mZ of |Vus|, the ratio of running masses mc/mt and the 1 σ
global fit of the phase γ. The three input parameters are used
to determine λ and θ at the scale mZ from (95) and (96),
including theoretical uncertainties. Then these are used to pre-
dict the fermion mass ratios, sin(2β) and the rest of the CKM
matrix elements. Finally the three third generation fermion
masses are used to determine the absolute values of the pre-
dicted fermion masses. The predicted lighter quark masses are
given at the scale of 2 GeV and the predictions for charged
lepton masses are given as pole masses to facilitate comparison
with the experimental values given in the PDG book [8]

Experimental input parameters
|Vus| (mZ) 0.2225 ± 0.0035
mc/mt(mZ) (3.7 ± 0.4) × 10−3

γ 61◦ ± 11◦

mpole
t 174.3 ± 5.1 GeV

mb(mb)MS 4.2 ± 0.1 GeV
mpole

τ 1.7769 ± 0.0003 GeV
predictions

λ(mZ) 0.211 ± 0.007
θ(mZ) 0.083 ± 0.014
sin(2β) 0.824 ± 0.004
|Vud| (mZ) 0.975 ± 0.002
|Vub| (mZ) 0.0037 ± 0.0009
|Vcs| (mZ) 0.9771 ± 0.0017
|Vcb| (mZ) 0.035 ± 0.007
|Vtd| (mZ) 0.007 ± 0.002
|Vts| (mZ) 0.035 ± 0.007
|Vtb| (mZ) 0.9993 ± 0.0002
mu(2 GeV)MS 2.1 ± 0.9 MeV
md(2 GeV)MS 4.2 ± 1.4 MeV
ms(2 GeV)MS 84 ± 19 MeV
mpole

e 0.49 ± 0.13 MeV

mpole
µ 92 ± 17 MeV

and charged lepton Yukawa matrices given by (72), (81)
and (106). These are the three third generation running
masses plus the three dimensionless parameters θ, λ and
γ. We have used as an input the values mb(mb), m

pole
t and

mpole
τ that were renormalized to a common scale before

diagonalization. We have a certain freedom to choose two
observables to determine θ and λ. We find it convenient to
choose as an input |Vus| and mc/mt to reduce as much as
possible the uncertainties in the determination of θ and λ.
The values of the input parameters at the electroweak scale
and our predictions can be read in Table 2. We determine
λ, θ solving numerically the system of (95) and (96). Next
we use λ and θ to determine the rest of the CKM elements
and sin(2β). Finally we use the measured third generation
fermion masses to predict the masses of the lighter quarks
and charged leptons. These have been renormalized us-
ing the equations included in the appendix. The predicted
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lighter quark masses are given in Table 2 at the scale of
2 GeV and the predictions for the charged lepton masses
are given as pole masses to facilitate comparison with the
experimental values.

It is worth to note that a set of viable Yukawa matrices
must also predict succesfully the so-called Q factor. This is
a combination of quark masses which has been determined
experimentally from pseudoscalar meson masses to a 3.5%
accuracy. It is defined by

Q =
ms

md√
1 −

(
mu

md

)2
= 22.7 ± 0.08 . (105)

In our case using the central values for θ, mt, mb and γ in
Table 2 and λ = 0.211 ± 0.007 we obtain Q = 23.5 ± 0.80
which agrees at 1σ with the experimental result. For λ =
0.218 we obtain the central value Q = 22.7. We note that
it is not convenient to use the measured value of Q to
determine one of the basic parameters, instead of |Vus| or
mc/mt, because Q contains an implicit dependence on the
uncertainty in the top and bottom quark masses.

Finallywe note that, if we take into account thatwe used
six input observables to determine the basic parameters of
the underlying Yukawa matrices arising from their normal-
ized forms in (72), (81) and (106) as can be seen in Table 2,
we are able to make eight true predictions: two quark mix-
ing angles, the up-, down- and strange-quark masses, the
CP -phase β plus the electron and muon masses. We note
that the value predicted for sin(2β) in Table 2 is slightly
lower than the value predicted to leading order in the pre-
vious section, which turns out to be even closer to the
experimental value.

9 Charged lepton sector spectra
and the Georgi–Jarlskog factor

We pointed out in Sect. 2, see (18) and (27), that there are
empirical relations that connect the charged lepton and the
quark masses. In this section we argue that there is already
a simple explanation for these relations, the well known
Georgi–Jarlskog factor. Let us assume that the normalized
Yukawa matrix for the charged lepton sector is given by

m̂L =

 0 θλ2 e−iγθλ2

θλ2 3 θλ 2θλ
eiγθλ2 2θλ 1

 . (106)

If this were the case the charged lepton mass ratios could
be calculated by a biunitary diagonalization. They would
be given by

me

mµ
=

1
9
λ2
(

1 − 4θλ
(

cos γ − 17
12

))
, (107)

mµ

mτ
= 3θλ

(
1 − 4

3
θλ+

1
9
λ2
)
. (108)

The leading order of these predictions would explain the
observed empirical formulas. A texture like (106), espe-
cially the relation |(m̂L)22| = 3 |(m̂D)22|, could be under-
stood in the context of grand unified models. For instance,
this understanding could be achieved by embedding the
quark and lepton fields in the representations 5 and 10
of SU(5) and assuming a non-minimal Higgs structure in
the unified theory [5] such that the field that couples to
the matter fields generating the (m̂L)22 entry transforms
under the representation 45 of SU(5). The corresponding
Clebsch–Gordan factors could generate a factor “−3” in the
(22) entry of the charged lepton Yukawa matrix. We must
emphasize that even though the original GUT model by
Georgi and Jarslkog is ruled out the Georgi–Jarslkog fac-
tor, or in other words the 45 Higgs, has been used by many
models, especially supersymmetric GUT models which are
not ruled out by the current data. It is also known that
the same factor “−3” could be generated in SO(10) grand
unified models with a Higgs field transforming under the
representation 126 of SO(10) [10]. This may indicate that
the empirical relations support a mechanism which can be
implemented in many GUT models, but it does not support
a particular GUT model. We must point out that the sign
of the factor 3 does not affect the absolute values of the
charged lepton masses predicted by the matrix in (106).

In the previous section we used quark sector data to
determine the flavor parameters λ and θ. These values
together with the measured tau lepton mass were used to
predict the electron and muon masses from (107) and (108).
The results, which are shown in Table 2, are consistent with
the measured electron and muon physical masses.

Alternatively one can determine λ and θ from (107)
and (108) by using the measured charged lepton mass ra-
tios and the 1σ global fit value of γ. We have used the
electroweak scale values of the charged lepton mass ratios
as shown in Table 3. Then using the running top- and
bottom-quark masses and the normalized quark Yukawa
matrices in (72) and (81) we can predict the four lighter
quark masses, the CKM elements and sin(2β). The results
are presented in Table 3. We display the renormalized val-
ues of the up-, down- and strange-quark masses at 2 GeV,
while the prediction for the charm quark mass is given at
the charm mass scale as usual. These values have been cal-
culated using the equations included in the appendix. All
the predictions are very close to the respective measured
values, which is consistent with the numerical results in
the previous section.

10 Perspectives and conclusions

The fact that the proposed simple set of Yukawa matrices
fits with precision the experimental data predicting suc-
cesfully eight parameters, as shown in Tables 2 and 3, may
seem very puzzling at first sight. It is a common belief that
the fermion spectra do not display any hidden order at
low energy and that if such an order exists it may only
be manifest at very high energy scales, of the order of the
GUT scale, through some simple textures for the Yukawa
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Table 3. Predictions given by the three-parametric set of
Yukawa matrices in (72), (81) and (106). In this case we have
used as input parameters the measured values at the elec-
troweak scale mZ of the ratios of running masses: mµ/mτ and
me/mµ plus the 1σ global fit of the phase γ. The three input
parameters are used to determine λ and θ at the scale mZ

from (107) and (108), including theoretical uncertainties. Then
these are used to predict the quark mass ratios, sin(2β) and
the rest of the CKM matrix elements from (72) and (81). Fi-
nally the top- and bottom-quark masses are used to determine
the absolute values of the predicted lighter quark masses. The
predicted lighter quark masses are given at the scale of 2 GeV
to facilitate comparison with the experimental values given in
the PDG book [8]

Input parameters
me/mµ(mZ) (4.73711 ± 0.00007) × 10−3

mµ/mτ (mZ) (5.882 ± 0.001) × 10−2

γ 61◦ ± 11◦

mpole
t 174.3 ± 5.1 GeV

mb(mb)MS 4.2 ± 0.1 GeV
predictions

λ(mZ) 0.199 ± 0.001
θ(mZ) 0.100 ± 0.001
sin(2β) 0.820 ± 0.005
|Vud| (mZ) 0.9778 ± 0.0005
|Vus| (mZ) 0.211 ± 0.003
|Vub| (mZ) 0.0040 ± 0.0001
|Vcd| (mZ) 0.211 ± 0.003
|Vcs| (mZ) 0.9794 ± 0.0002
|Vcb| (mZ) 0.0405 ± 0.0006
|Vtd| (mZ) 0.0075 ± 0.0009
|Vts| (mZ) 0.0401 ± 0.0007
|Vtb| (mZ) 0.99917 ± 0.00002
mc(mc)MS 1.34 ± 0.08 GeV
mu(2 GeV)MS 1.85 ± 0.17 MeV
md(2 GeV)MS 4.2 ± 0.3 MeV
ms(2 GeV)MS 94 ± 5 MeV

matrices, which are supposed to get “spoiled” by RGE ef-
fects when extrapolated to low energies. We have shown in
this paper, through a precision analysis of the present data
on fermion masses and mixing angles, that this common
prejudice may be wrong.

We are looking forward for a future more precise ex-
traction of the lighter quark masses that could test how
solid these results are. In any case, it is worth to include
some considerations regarding the possible characteristics
of an underlying theory of flavor that is able to make sense
of the previous results. Let us recapitulate.
(1) There are two empirical formulas that connect the six
fermion mass ratios and the CKM elements.
(2) A simple three-parametric set of Yukawa matrices for
the quark and charged lepton sectors can generate these
relations naturally and account for the low energy mea-
sured fermion mass ratios and CKM elements.

(3) The simplest known explanation of the charged lepton
hierarchies requires the use of grand unification to account
for the factor 3 in the (22) entry of the charged lepton
Yukawa matrix.
(4) The scale dependent empirical formula works perfectly
at low or intermediate energies but seem to get spoiled
when extrapolated to very high energies, of the order of
the GUT scale MG ≈ 1016 GeV.

Additionally, the proposed Yukawa matrices have the
following characteristics.
(1) All the entries except the (33) entry are proportional to
a common parameter, θ, which is approximately θ ≈ 0.1.
(2) The generation of the correct fermion mass hierarchies
requires the introduction of different powers ofλ, the second
flavor parameter, which is approximately λ ≈ 0.21.
(3) The CP -violating phases β and γ are related by a
simple formula, which predicts succesfully β given γ. This
relation also predicts that the maximum value of β that
can be reached is close to the measured value for a value
of γ around the central value of the global fit.

We note that any theory of flavor that can generate at
low or intermediate energy scales the simple set of matrices
proposed in this paper (or an alternative set of matrices
equivalent to leading order in λ) would automatically fit
the experimental data. The generation of hierarchies in the
Yukawa matrices, like the hierarchies generated by polyno-
mial matrices in powers of λ, is relatively easy to implement
ad hoc, even it is though not so easy to explain from first
principles. For instance, through the spontaneous break-
ing of a flavor symmetry, by assuming that the VEVs of
the flavor breaking fields have a certain hierarchical struc-
ture. There are two characteristics I want to highlight: the
presence of a common parameter in all the entries of the
Yukawa matrices except in the (33) entry, and the fact
that the second empirical relation seems to get spoiled
when extrapolated to very high energies.

A possible theory to explain the presence of a common
parameter in all the entries of the Yukawa matrices except
in the (33) entry is the radiative generation of Yukawa
couplings. We note that the parameter θ curiously has the
right size to be a loop factor, θ ≈ 0.1. If this is so, the
Yukawa couplings must be generated at a scale not very
high; otherwise our mass relations would get spoiled, as
was pointed out above. To generate Yukawa couplings ra-
diatively, one has to postulate the existence of additional
fields belonging to two different sectors: the flavor break-
ing sector and the flavor messenger sector. The messenger
sector fields would transmit flavor violation from the flavor
breaking sector to the matter sector, generating Yukawa
couplings radiatively. One more piece of the puzzle is the
factor 3 in the charged lepton Yukawa matrix; the simplest
explanation of this factor requires grand unification.

One simple possibility arises in supersymmetric GUT
models that can reconcile the generation of Yukawa cou-
plings at low energy with grand unification [11]. It is known
that grand unification in the context of supersymmetric
models can successfully predict the weak mixing angle if
the unification scale is around 1016 GeV. On the other hand,
the presence of soft supersymmetry breaking terms allows
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for the radiative generation of quark and charged lepton
masses through sfermion–gaugino loops. The gaugino mass
provides the violation of fermionic chirality required by a
fermion mass, while the soft breaking terms provide the
violation of chiral flavor symmetry [12]. In this case the
superpartners of the standard model matter fields would
be the flavor messengers. This would provide us with a con-
sistent scenario where we can generate the Georgi–Jarlskog
factor in the supersymmetry breaking sector and transmit
it to the fermion sector at low energies. A supersymmetric
model that implements the low energy radiative genera-
tion of Yukawa couplings has been proposed recently. This
was achieved by postulating a U(2) horizontal symme-
try [13] that is broken by a set of supersymmetry breaking
fields [11]. The model can also overcome the present con-
straints on supersymmetric contributions to flavor chang-
ing processes [14].

It is known that 13 out of the 18 parameters of the
standard model belong to the flavor sector: nine fermion
masses, three mixing angles and one CP -violating phase.
We have shown in this paper that there are regularities
underlying the measured fermion masses that allow us to
connect them through two simple empirical formulas. This
implies a reduction in the number of fundamental param-
eters in the underlying theory of flavor from 13 to six. We
have proposed a simple set of three-parameter Yukawa ma-
trices, with two real parameters and a complex phase, that
can precisely account for these mass relations and give us
a simpler parametrization of the CKM matrix. The pro-
posed set of Yukawa matrices may make the features of the
underlying theory of flavor more apparent and ultimately
play the role of a sort of “Balmer formulas” for the fermion
spectra. Any theory of flavor that is able to generate this set
of matrices would automatically fit the experimental data.
Furthermore, the proposed Yukawa matrices predict a sim-
ple and successful relation between the SM CP -violating
phases. We have also pointed out that the empirical mass
formulas between the quark and charged lepton masses find
their simplest explanation in the context of grand unified
theories. There is hope that our knowledge of the lighter
quark masses is going to improve considerably in the near
future by the use of lattice QCD methods. A very precise
extraction of the lighter quark masses could allow us to
infer the scale where the scale dependent empirical relation
becomes optimal, i.e. the Yukawa scale or scale where the
Yukawa matrices are generated. These empirical relations,
if confirmed, could be a guiding light in the search for the
underlying theory of flavor.

A Running lepton masses

To compute the running charged lepton masses, I use well
known expressions, included here for completeness. The
physical charged lepton masses are related to the MS run-
ning lepton masses,ml(µ)MS = ml(µ), through the relation

ml(µ) = mpole
l (1 +∆l +∆Z +∆W ) , (109)

where the one-loop self-energy correction is given by

∆l =
α(µ)

π

[
3
2

ln
(
ml(µ)
µ

)
− 1
]
, (110)

and the Z and W boson thresholds are given by

∆Z =
α(µ)
4πc2W

[(
3 − 6s2W +

1
4s2W

)
ln
(

µ

mZ

)
+

7
4

(
1 − 2s2W +

1
28s2W

)]
, (111)

∆W =
α(µ)
8π

[
ln
(

µ

mW

)
+

1
4

]
. (112)

Using the measured physical masses,

mpole
e = 0.510998902 ± 0.000000021 MeV , (113)

mpole
µ = 105.6583568 ± 0.0000052 MeV , (114)

mpole
τ = 1776.99 ± 0.3 MeV , (115)

we can calculate the running masses at a common scale.
We choose to evaluate the running masses at µ = mZ

where the self-energy correction dominates the thresh-
old. We will use s2W (mZ)MS = 0.23113(15), α(mZ)−1

MS
=

127.934 ± 0.027, mW = 80.423 ± 0.039 GeV and mZ =
91.1876 ± 0.0021 GeV. We obtain

me(mZ) = 0.487304 ± 0.000005 MeV , (116)

mµ(mZ) = 102.8695 ± 0.0005 MeV , (117)

mτ (mZ) = 1748.87 ± 0.30 MeV . (118)

We note that at Q = mZ the larger uncertainty in the run-
ning masses comes from the uncertainty in α(mZ). These
running masses were used in Sect. 2 to search for correla-
tions in higher order dimensionless ratios of charged lep-
ton masses.

B Running quark masses

To calculate the dimensionless ratios of running quark
masses we must renormalize the quark masses to a common
scale. For completeness we include in this section a brief
explanation of the methods used to calculate running quark
masses and an update of previous numerical results [15].
Different quark masses are usually given at different renor-
malization scales. For the top quark our starting point is the
pole mass. We use the CDF/DO working group average [8]

mt = 174.3 ± 5.1 GeV . (119)

For the bottom and charm quarks we start with the running
masses, mb(mb)MS and mc(mc)MS as extracted from sum
rules in [16] and [17] respectively. The averaged values are

mb(mb)MS = 4.2 ± 0.1 GeV , (120)

mc(mc)MS = 1.28 ± 0.09 GeV . (121)
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This value of the charm quark mass is compatible with re-
cent lattice calculations,mc(mc)latMS

= 1.26±0.16 GeV [18].
For the lighter quarks we use the normalized MS values at
µ = 2 GeV as extracted from sum rules in [19,20]. We use
the rescaled values [8]

ms(2 GeV)MS = 117 ± 17 MeV , (122)

md(2 GeV)MS = 5.2 ± 0.9 MeV , (123)

mu(2 GeV)MS = 2.9 ± 0.6 MeV . (124)

We must add that there is a recent extraction of the strange-
quark mass by the HPQCD collaboration [21], using full
lattice QCD, that has extracted a central value for the
strange-quark mass lighter than the one obtained by sum
rules and that has considerably reduced the corresponding
uncertainty, ms(2 GeV)lat

MS
= 76 ± 10 MeV. This value has

not been used in the main text because it has not yet been
confirmed by other lattice QCD collaborations.

For simplicity and to reduce the propagation of un-
certainties we rescale the top-, bottom- and charm-quark
masses down to µ = 2 GeV. To calculate the running top-
quark mass at µ = 2 GeV we use the two-loop relation
between the MS and pole quark masses, which is known
through order O(α3

s ) [22–27],

m(µ)MS

M

= 1 + as(µ)
[
L− 4

3

]
+a2

s (µ)
[
− 3019

288
+

71
144

n+
(

445
72

− 13
36
n

)
L

+
(

− 19
24

+
n

12

)
L2 +

ζ3
6

− ζ2

(
2 +

2
3

ln 2 − 1
3
n

)
− π2

6
∆

]
, (125)

where as(µ) = αs(µ)/π is the MS strong coupling constant,
M is the on-shell mass,L = log(M2/µ2), n is the number of
light quarks and ∆, ∆ =

∑
i≤n

(
mi

M

)
, is a small correction

due to light quark mass effects [23].
To calculate the charm and bottom quark running

masses at µ = 2 GeV we use the analytic solution of the
renormalization group equation in the MS scheme. This
was originally obtained at three loops [28] and recently the
four-loop term has also been computed [29] and found to
be very small. This takes the form

m(µ)MS

m̂
= (2β0as (µ))γ0/β0

×
{

1 +
(
γ1

β0
− γ0β1

β2
0

)
as (µ)

+
1
2

[(
γ1

β0
− γ0β1

β2
0

)2

(126)

+
(
γ2

β0
+
γ0β

2
1

β3
0

− β1γ1 + β2γ0

β2
0

)]
as (µ)2

}
,

where

γ0 = 1, β0 =
(

11 − 2
3
n

)
1
4
,

β1 =
(

51 − 19
3
n

)
1
8
,

γ1 =
(

202
3

− 20
9
n

)
1
16

,

β2 =
(

2857 − 5033
9

n− 325
27

n2
)

1
128

, (127)

γ2 =
(

1249 −
(

2216
27

+
160
3
ζ(3)

)
n− 140

81
n2
)

1
64

.

Here n is the number of light quarks, and the integration
constant m̂ is the renormalization group invariant mass.
We do not need to know m̂ because, if we denote the right
hand side as m̂MSFn(µ), the running mass at scale µ can
be calculated from a given running mass at scale m(m)MS
using the expression

m(µ)MS = m(m)MS
Fn(µ)

Fn(m(m))
. (128)

In the case of four active light quarks we obtain

F4(µ) =
(

25as(µ)
6

)12/25

(129)

×
(

1 +
3803
3750

as(µ) + 2.078459a2
s (µ)

)
.

To compute these we need the values of αs(mb), αs(mc)
and αs(µ) corresponding to the experimental measurement
at αs(mZ). To this end we use the three-loop analytical
formula for αs in the MS scheme [28], which is the solution
of the corresponding renormalization group equation,

αs(µ) =
π
β0t

[
1 − β1

β2
0

ln (t)
t

(130)

+
β2

1

β4
0t

2

((
ln (t) − 1

2

)2

+
β2β0

β2
1

− 5
4

)]
.

Here t = ln
(
µ2/Λ2

n

)
and Λn is the integration constant for

n light quarks, to be determined from experiment. The four-
loop contributions to (130) have also been calculated [30]
and found to be very small. In practice, we use the value
of αs(MZ) to first determine Λ5 and αs(mb). Then we
use αs(mb) to determine Λ4, αs(mc) and αs(µ = 2 GeV).
Taking into account also the experimental uncertainty in
αs(mZ), αs(mZ)MS = 0.1172 ± 0.0020, we obtain

Λ5 = 206 ± 26 MeV , (131)
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Λ4 = 277 ± 43 MeV , (132)

αs(mb(mb))MS = 0.218 ± 0.009 , (133)

αs(2 GeV)MS = 0.286 ± 0.019 , (134)

αs(mc(mc))MS = 0.354 ± 0.043 . (135)

The uncertainty in αs(mb(mb)), which is four times larger
than the uncertainty in αs(mZ), comes mainly from the
uncertainty in the determination of Λ5. The uncertainty
in the determination of Λ5 and Λ4 comes mainly from
the uncertainties in αs(mZ) and αs(mb(mb)) respectively.
Finally we can calculate the running quark masses at µ =
2 GeV. We calculate the top-quark mass from (125) using as
an input the top pole mass in (119) andαs(µ) as determined
in (134). We obtain

mt(2 GeV)MS = 298.2 ± 15.4 GeV . (136)

The uncertainty comes from the top pole mass uncertainty
and from the uncertainty in the determination of αs(µ). Al-
ternatively one can compute the top-quark running mass
at the top scale, mt(mt) using (125) and then use for-
mula (128) to calculate mt(µ). These two approaches give
the same numerical results. The charm and bottom quark
running masses are calculated from (128), using as an in-
put the running masses,mb(mb)MS andmc(mc)MS, and the
values of αs(mb(mb)), αs(mc(mc)) and αs(µ) determined
in (133)–(135). We obtain

mc(2 GeV)MS = 1.12 ± 0.13 GeV , (137)

mb(2 GeV)MS = 4.91 ± 0.20 GeV . (138)

Their respective uncertainties come mainly from the un-
certainties in the theoretical extractions of mb(mb)MS and
mc(mc)MS in (120)–(121). These running masses were used
together with the charged lepton running masses in Sect. 2.
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